
Tetrahedron Letters,Vol.29,No.42,pp 5423-5426,1988 0040-4039/88 $3.00 + .OO 
Printed in Great Britain Pergamon Press plc 

A CONVERGENT GENERAL SYNTHETIC PROTOCOL 

FOR SYN-1,3-POLYOLS 

Yuji Mori, Akio Takeuchi, Hitomi Kageyama, and Makoto Suzuki* 

Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan 

Abstract: A method for the stereoselective synthesis of syn-1,3- 

polyols using a chiral building block 1 is described. High w- 

stereoselectivity in the reduction of 8-hydroxy ketones was 

achieved using lithium aluminum hydride-lithium iodide. 

A great deal of attention has been paid to the stereocontrolled synthesis 

of polyhydroxylated acyclic compounds in recent years since they form the 

basic structure of polyene and polyol macrolide antibiotics. 
1 A character- 

istic feature of the families is the presence of 1,3-polyol subunits. Despite 

their importance as antifungal agents, little is known about the stereochemis- 

try of the macrolide antibiotics except for amphotericin B, 
2 

which is the only 

member of this family of known absolute configuration to have syn-1,3-diol 

units. In 1987 Schreiber et al. reported the absolute configurations of -- 
mycoticins A and B and demonstrated that the antibiotics contained both G 

and anti-1,3-polyols. 
3 

The presence of an anti-1,3-polyol structure was also 

shown in the stereochemical study of lienomycin by Nakanishi et al. 4 There- -- 
fore the stereoselective synthesis of continuous 1,3-diol units is important. 

In connection with our stereochemical study of sporaviridin, 5 
a polyol 

macrolide, we needed efficient methods for preparing 2 and anti-polyols. 
6 

In this letter we describe a convergent and general protocol for syn-1,3- 

polyol synthesis which is extendable to higher homologues of this series by 

repetition. The strategy for the polyol synthesis is presented in Scheme I. 
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A common precursor for s and anti-polyols III and IV is considered to be 

the hydroxy ketone II, which could be obtained by coupling of the chiral 

synthon 1, a synthetic equivalent of the C4 unit I. 
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Scheme II (a) 1, n-BuLi, THF, -20°C, 2h, then 2, 17h; (b) 6.0 equiv. 

NBS, 6.3 equiv. AgN03, 12 equiv. 2,6-lutidine, 85% aq. CH3CN 

7 min; (c) 5.0 equiv. LiAlH4, 5.0 equiv. LiI, ether, -lOO°C, 

30 min; (d) PPTS, MeOH, 45"C, 2h. 

Our synthesis (Scheme II) started with the coupling reaction of the anion 

generated from the chiral synthon l7 

epoxide 28 ([a]i4- 

( [al ;3- 9.05"(CHC13)) with the chiral 

3.60°(CHC13)) to give the dithiane 3 in 98% yield. Careful 

treatment of 3 with NBS-AgN03 in the presence of 2,6-lutidine in aq. CH3CN for 

7 min afforded the 8-hydroxy ketone 4 (78% yield).' The next step was the 

stereoselective reduction of 4 to the syn-1,3-diol 5. We have reported a 

lithium aluminum hydride-lithium iodide reduction as a promising new method 

for such purposes. 10 Thus, reduction of 4 with LiA1H4 in the presence of LiI 

in ether at -lOO°C resulted in the formation of the s-product 5 in 91% yield 

with exellent w-selectivity (syn :anti=95:5). A moderate selectivity (syn: 

anti=79:21) was observed when the reduction was carried out without LiI at 

-78'=C. It is worthy to note that the presence of the hydroxyl group in 4 is 

not important in this 1,3-asymmetric reduction. 10 Deprotection of 5 yielded 

all w-pent01 derivative 6 ([a]i5 +11.5E0(CHC13)) in 80% yield. The compounds 

5 and 6 have a 1,2-diol structure which is a useful functional group for fur- 

ther elaboration of the molecules. 

The stage was set to build higher homologues of 1,3-polyols (Scheme III). 

The c-diol 5 was protected as a cyclohexylidene ketal 7 (93% yield). Selec- 

tive deprotection of the acetonide was accomplished by the treatment of 7 with 

80% AcOH-THF (9:l) at -lO°C and the desired diol 8 was isolated in 42% yield 

along with 7 (89% yield based on the consumed starting material). This was 

converted to the epoxide 9 ( [a]i4- 1.93'(CHC13)) by routine synthetic opera- 

tions in 78% overall yield. 
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A second coupling reaction was carried out by treatment of the epoxide 9 

with the anion of the chiral dithiane 1 to afford the alcohol 10 in 93% yield, 

which was converted to the 8-hydroxy ketone 11 (69% yield) under carefully 

controlled conditions. The highly E-stereoselective reduction of 11 was 

again achieved using LiA1H4 -LiI in ether at -1OO'C to yield the syn-diol 12 

in 86% yield. The diastereoselectivity of the reduction was c: anti= 95:5. 

Protection of 12 with cyclohexylidene ketal gave 13 ([a]~3+3.110(CHC13)) in 

88% yield, which in principle could be homologated to higher members of all 

bw 
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Scheme III 

(a) l,l-dimethoxycyclohexane, PPTS, CH2C12, 7h; (b) 80% AcOH-THF 

(9:1), -lO°C, 48h; (c) (i) 5 equiv. TsCl, pyridine, O'C, 3h, (ii) 

KH, ether-MeOH (5:1), O°C, 20 min; (d) 1, n-BuLi, THF, -20°C, 2h, 

then 9, 18h; (e) 6.0 equiv. NBS, 6.3 equiv. AgN03, 12 equiv. 

2,6-lutidine, 85% aq. CH3CN, 7 min; (f) 5.0 equiv. LiA1H4, 5.0 

equiv. LiI, ether, -lOO°C, 30 min; (g) PPTS, MeOH, 45OC, 5h. 
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~-l,3-polyols. Finally the sequence was terminated by the acid treatment 

of 12 to give the heptol derivative 14 ([a]~3+9.930(CHC13)) in 53% yield. 

The success of the present convergent synthesis is particulary owed to 

developments of a new chiral building block 1 and a highly syn-selective 

LiA1H4-LiI reduction method. Further investigation of this new methodology 

and its applications to the synthesis of polyhydroxylated natural products 

are in progress. 
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